多进程:豆瓣电影Top250
import logging
import requests
import re
import json
import multiprocessing
from os import makedirs
from os.path import exists
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')
BASE_URL = 'https://movie.douban.com/top250'
TOTAL_PAGES = 10
RESULTS_DIR = 'douban_top_250'
exists(RESULTS_DIR) or makedirs(RESULTS_DIR)
# 请求页面,获得 html
def scrape_page(url):
logging.info('正在爬取:%s', url)
headers = {
'User-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36'
}
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
return response.text
logging.error('当爬取:%s 时得到无效的状态码:%s', url, response.status_code)
except requests.RequestException:
logging.error('当爬取:%s 时发生错误', url, exc_info=True)
# 拼接首页 url,返回该页面的 html
def scrape_index(page):
index_url = f'{BASE_URL}?start={(page-1)*25}'
return scrape_page(index_url)
# 解析页面,获取详情页 url
def parse_index(html):
pattern = re.compile('class="pic".*?href="(.*?)">', re.S)
items = re.findall(pattern, html)
if not items:
return []
for item in items:
detail_url = item
logging.info('获得详情 url:%s', detail_url)
yield detail_url
# 获取详情页 html 页面
def scrape_detail(url):
return scrape_page(url)
# 解析详情页
def parse_detail(html):
name_pattern = re.compile('<span property="v:itemreviewed">(.*?)</span>.*?>(.*?)</span>', re.S)
name = (re.search(name_pattern, html).group(1).strip()+re.search(name_pattern, html).group(2).strip()) if re.search(name_pattern, html) else None
return {
'name': name,
}
# 保存数据
def save_data(data):
name = data.get('name')
data_path = f'{RESULTS_DIR}/{name}.json'
json.dump(data, open(data_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=2)
def main(page):
index_html = scrape_index(page)
detail_urls = parse_index(index_html)
for detail_url in detail_urls:
detail_html = scrape_detail(detail_url)
data = parse_detail(detail_html)
logging.info('获取到详情数据:%s', data)
logging.info('保存数据到json文件')
save_data(data)
logging.info('数据已成功保存')
if __name__ == '__main__':
pool = multiprocessing.Pool()
pages = [i for i in range(1, TOTAL_PAGES+1)]
pool.map(main, pages)
pool.close()
pool.join()Last updated